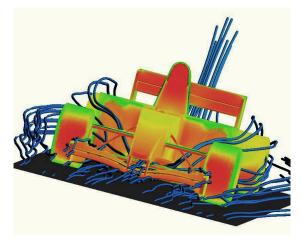
an introduction to


Imagine you want to build a race car

But you want it to work well on both dry tracks and wet tracks

You could use a simulation : model the car and the track and *compute* how they would interact

Or you could use a real world experiment : build a car, and try it on a real circuit

Or you could use a real world experiment : build a car, and try it on a real circuit

But sometimes, rain is unlikely

You could move to another race track ... But what if you could change the weather?

You could move to another race track ... But what if you could change the weather?

That's what Distem does : Take a platform, and alter it to suit your experimentation needs

Distem

An emulator for distributed systems

Take your real application

Run it on a cluster

And use Distem to alter the platform so it matches the experimental conditions you need

Ideal complement to other tools SimGrid Grid'5000

Toolkit for the simulation of distributed applications in heterogeneous environments

Large-scale platform for experiments on distributed systems

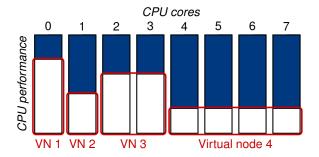
1700 nodes, 7000 cores Fully reconfigurable

Ideal complement to other tools SimGrid Grid'5000

Toolkit for the simulation of distributed applications in heterogeneous environments

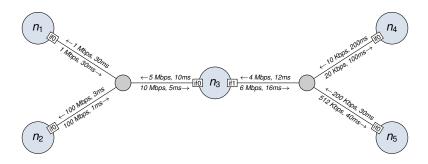
Large-scale platform for experiments on distributed systems

1700 nodes, 7000 cores Fully reconfigurable

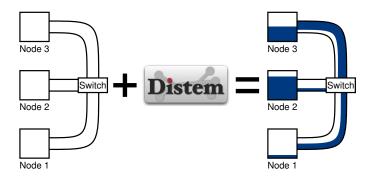

Distem can run on Grid'5000

What can Distem do for you?

- Introduce heterogeneity in an homogeneous cluster How does your app perform when some nodes are slower?
- Emulate complex network topologies How does your app perform on a Grid ? on a slower network ?
- Inject faults and performance variations during the experiment How does your app behave when a node crashes ? When the available CPU time decreases ? When the available network bandwidth increases ?


Introducing heterogeneity

- Distem splits real nodes into several virtual nodes
 - with a different number of cores
 - with different CPU performance
- Each virtual node can be used as a real Linux system


Emulating network topologies

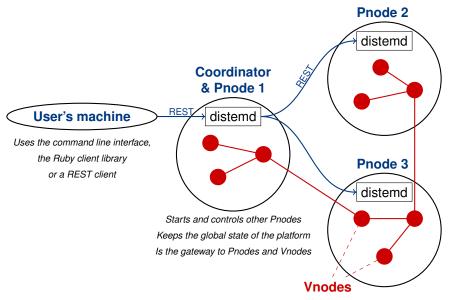
- Emulate several local networks linked together
- Control available bandwidth and latency on each interface

Distem internals

Distem uses modern Linux features to *steal* resources from applications : LXC, cgroups, cpufreq, iptables, traffic control

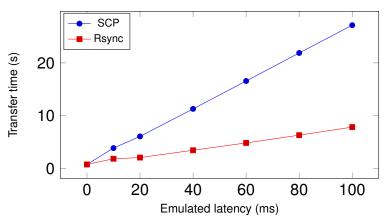
User interfaces

- Command-line interface distem command
 ©©© Easy to use
 - S Harder to automate
 - S No access to more advanced features


Ruby library

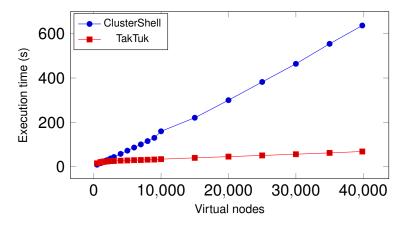
- © Easy to automate
- Second to all features
- ☺/☺ Easy to use if you known Ruby

REST API


- © Can be used from any language
- © Requires REST knowledge

Overview of a Distem instance

Example experiment : SCP vs Rsync


- Transfer 50 files (total : 5 MB)
- Available bandwidth : 10 Mbps
- Varying network latency

Distem - http://distem.gforge.inria.fr/

Distem scales to thousands of virtual nodes

Executing a command with ClusterShell and TakTuk

More information?

http://distem.gforge.inria.fr/

Distem - http://distem.gforge.inria.fr/